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Previous theoretical considerations of electron beam relaxation in inhomogeneous
plasmas have indicated that the effects of the irregular solar wind may account for
the poor agreement of homogeneous modelling with the observations. Quasi-linear
theory and Hamiltonian models based on Zakharov’s equations have indicated that
when the level of density fluctuations is above a given threshold, density irregularities
act to de-resonate the beam–plasma interaction, restricting Langmuir wave growth on
the expense of beam energy. This work presents the first fully kinetic particle-in-cell
(PIC) simulations of beam relaxation under the influence of density irregularities.
We aim to independently determine the influence of background inhomogeneity on
the beam–plasma system, and to test theoretical predictions and alternative models
using a fully kinetic treatment. We carry out one-dimensional (1-D) PIC simulations
of a bump-on-tail unstable electron beam in the presence of increasing levels of
background inhomogeneity using the fully electromagnetic, relativistic EPOCH PIC
code. We find that in the case of homogeneous background plasma density, Langmuir
wave packets are generated at the resonant condition and then quasi-linear relaxation
leads to a dynamic increase of wavenumbers generated. No electron acceleration is
seen – unlike in the inhomogeneous experiments, all of which produce high-energy
electrons. For the inhomogeneous experiments we also observe the generation of
backwards-propagating Langmuir waves, which is shown directly to be due to the
refraction of the packets off the density gradients. In the case of higher-amplitude
density fluctuations, similar features to the weaker cases are found, but also packets
can also deviate from the expected dispersion curve in (k, ω)-space due to nonlinearity.
Our fully kinetic PIC simulations broadly confirm the findings of quasi-linear theory
and the Hamiltonian model based on Zakharov’s equations. Strong density fluctuations
modify properties of excited Langmuir waves altering their dispersion properties.
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1. Introduction

The processes involved in the interaction of propagating electron beams with
background plasmas has been of long-standing astrophysical interest due to their
close association with some of the most energetic solar system radio emissions,
including Type III solar radio busts. The generally accepted explanation for Type III
emission, the so-called plasma emission mechanism, is a long-standing, multiple-stage
model which has been considered extensively by numerous authors who have refined
the initial ideas of Ginzburg & Zhelezniakov (1958) (although it should be noted other
possibilities exist, e.g. such as the linear mode conversion suggested by Forslund et al.
1975; Kim, Cairns & Robinson 2007). In the first stage of the plasma emission model,
electron beams which are injected in the low corona are susceptible to the bump-in-tail
instability as they propagate through the background plasma, and thus the beams can
generate Langmuir waves. In later stages, these beam-generated Langmuir waves are
susceptible to nonlinear decay and three-wave interaction processes which go on to
produce the electromagnetic emission. Whilst the theoretical specifics of the later
stages vary (see the recent review of Reid & Ratcliffe 2014 and references therein),
for the purposes of this paper it is sufficient to understand that the initial stage – the
production of a population of Langmuir waves due to a resonant interaction with the
beam electrons – is a common feature of all such models.

The most basic treatment of this stage (the beam–plasma instability) is the
application of quasi-linear theory (QLT) under the assumption of a homogeneous
plasma, which describes the exchange of energy from diffuse, fast beam electrons
into Langmuir waves at the resonant phase velocity (inverse Landau damping). Once
the particles reach a plateau-type distribution, further wave growth is prohibited, due
to the absence of a positive slope in the velocity distribution, and thus the instability
is saturated. Under homogeneous QLT, the calculated saturation time implies a flight
distance of beams originating in the corona of only hundreds of kilometres before
reaching saturation (e.g. Sturrock 1964). This is at odds with in situ solar wind
measurements taken as far out as 1 AU, which have documented both the presence
of bump-in-tail-type electron distributions and growth of Langmuir waves in excess
of background levels (see e.g. Anderson et al. 1981; Lin et al. 1981). Furthermore,
simple homogeneous QLT models are unable to account for the observed spatial
clumping of Langmuir waveforms in the solar wind (e.g. Gurnett et al. 1978); the
explanation of which must appeal to other processes, such as the kinetic localisation
process described by Muschietti, Roth & Ergun (1995, 1996) by which the beam
tends to spatially localise in a homogeneous medium as a result of nonlinearities in
wave–particle resonances. Alternatively, localisations can also be produced directly as
a result of background inhomogeneity, which we will explore in this paper.

Accounting for the presence of the density inhomogeneity in the background
plasma has been shown in numerous studies to be a plausible explanation for the
above discrepancies. Ryutov (1969), Breizman & Ryutov (1970) and Nishikawa &
Ryutov (1976) considered the quasi-linear relaxation of an electron beam in the
presence of density inhomogeneities. They found that due to presence of the density
inhomogeneities, a de-resonation of the beam–particles and background wave field
may occur, which impacts upon the efficacy of the beam relaxation. This broadening
of resonances was found to be able to access both lower and higher velocities, and
thus the formation of a high-energy tail in the beam velocity distribution function
via a re-absorption of Langmuir wave energy was also predicted. The governing
equations of Ryutov (1969) where also revisited by Voshchepynets & Krasnoselskikh
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(2013), who considered numerical solutions in order to relax assumptions about beam
temperature used in the earlier analytical solutions.

A number of recent studies have attempted to simulate beam relaxation under
realistic solar wind conditions in which the conclusions of Ryutov (1969) and
Breizman & Ryutov (1970) are thought to hold, in order to determine if such a system
can account for the aforementioned observational discrepancies. Krafft, Volokitin &
Krasnoselskikh (2013, 2015), Krafft et al. (2014) have used numerical models based
on a Hamiltonian approach whereby the dynamics of the background plasma particles,
Langmuir and ion-acoustic wave fields are described by the Zakharov equations, which
are coupled to a population of resonant beam–particles that are evolved according to
a particle approach.

Krafft et al. (2013) found that the plasma inhomogeneities crucially influence
the characteristics of the Langmuir turbulence and the beam–plasma interaction.
It was shown that the Langmuir wave growth becomes localized and clumpy,
similar to recent observations by STEREO and other satellites. In their model
beam particles quickly de-resonate from the Langmuir waves and mutual energy
exchange between the two is hampered much faster than in the homogeneous plasma
case. Krafft et al. (2013) also found that a tail of accelerated electrons was formed
and the velocities can exceed significantly the beam drift velocity, reaching two
times the initial beam drift speed. Krafft et al. (2014, 2015) extended the work,
constructing observable waveforms and considering the interplay with nonlinear
wave–wave interaction processes respectively. Similarly, Voshchepynets et al. (2015),
Voshchepynets & Krasnoselskikh (2015) have considered the specific influence of
density inhomogeneities instead using a probabilistic model. They found that for
the very rapid beams with beam velocity exceeding the electron thermal speed by
a factor of 15, the relaxation process consists of two well-separated steps. In the
first step, the major relaxation process occurs with the wave growth rate everywhere
becoming almost close to zero or negative. In the second stage the system remains
in the state close to state of marginal stability long enough to explain how the beam
may be preserved travelling distances over 1 AU while still being able to generate
the Langmuir waves that are usually detected in situ by satellites.

In light of these recent results there is a growing consensus that inhomogeneity
will significantly modify the beam–plasma system and so cannot be ignored in the
context of electron beams propagating in the solar wind. However, the changes to the
relaxation of electron beams due to plasma inhomogeneity are yet to be considered
using a fully kinetic approach. There are a two main motivations for considering
the problem within a fully kinetic particle-in-cell (PIC) approach. Firstly, the PIC
description of plasmas is in principle the most generalised approach and can describe
a richer physical picture (theoretically containing all of the physics, in the limit of
realistic numbers of particles). Secondly, the use of beam-only kinetics imposes an
upper limit on excitable wave vectors as the beam relaxes towards smaller velocities
during the velocity-space plateau formation. Thus, we note that the fully kinetic PIC
simulation has the advantage of accessing the full k-range. In this paper we therefore
present the results of the first such study whereby an electron beam’s interaction with
an inhomogeneous background is simulated using the fully kinetic particle-in-cell
method.

The paper is structured as follows: in § 2 we describe the parameters used in our
simulations. In § 3.1 we present the results for the homogeneous experiment, followed
by the results of the different inhomogeneous results in § 3.2. The implications of the
results are discussed in § 4, and conclusions are drawn in § 5.
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FIGURE 1. Influence of the level of inhomogeneity on the evolution of the electron
velocity distribution function with time, where 1n = 0 (blue), 0.01 (green), 0.02 (red),
0.03 (cyan), 0.04 (magenta) and 0.05 (black). The initial profile of the electrons (common
to all cases) is shown by the black dashed line.

2. Numerical set-up

In this paper we present the results of six numerical experiments in which a
bump-in-tail unstable electron beam is initialized in the presence of a Maxwellian
background which is increasingly irregular in space. The simulations are carried out
in a one-dimensional (1-D) geometry using EPOCH, an open-source multidimensional
particle-in-cell code. Full details of the underlying solver, along with benchmarking
on test problems, are available in Arber et al. (2015).

All parameters except for those relating to the spatial profile of the background
particles are common to all six experiments. The homogeneous background plasma
parameters, upon which the density irregularities are then imposed, is chosen as
follows: the homogeneous background number density n0= ne= ni= 5× 106 m−3 and
background electron temperature Te = 10 eV. The beam particles are initialised with
a shifted Maxwellian profile, with density nb/n0 = 2.5× 10−4, speed vb = 14Vth,e and
velocity spread of 1vb = 0.08vb. The initial electron velocity distribution function
may be seen in the dashed curves of figure 1.

The background density profile n0 is modified from simulation-to-simulation with
the addition of a spatially dependent perturbation δn(x) such that n′0(x)= n0 + δn(x).
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The perturbation’s profile is comprised of ten harmonics:

δn(x)= 1n
N

10∑
i=1

Aisin
(

2πx+ 2πφi

λi

)
. (2.1)

Each harmonic’s parameters were chosen randomly from a uniform distribution
ranging from 0–1 (amplitude Ai), 300λD–2000λD (wavelength λi) and 0–1 (phase-shift
φi). The resulting signal was then normalised in amplitude by a factor N that is
calculated such that the average amplitude of the profile in question δn(x) can
be fixed by a choice of 1n such that 1n = 〈(δn/n0)

2〉1/2. Thus, the experiments
considered vary as a choice of average profile percentage density fluctuation.

Following Ryutov (1969), the modified Langmuir wave dispersion relationship in
the presence of such a density profile is to the first order

ω(k, x)≈ωpe

(
1+ 1

2
δn(x)

n0

)
+ 3

2
k2V2

th,e

ωpe
. (2.2)

Where ωpe is the electron plasma frequency and Vth,e the electron thermal velocity.
Thus, for density fluctuation to be large enough to cause beam Langmuir wave de-
resonance we require the density ratio term on right-hand side of (2.2) to be larger
than the third term. This yields

1n > 3
k2V2

th,e

ω2
pe

. (2.3)

Noting that the expected wavenumber associated with the two stream instability is
approximately k≈ωpe/vb then we deduce

1n > 3
(

Vth,e

vb

)2

. (2.4)

We therefore expect choices of average density profile satisfying (2.4) to act in
the inhomogeneous regime described by Ryutov (1969). In this paper we present
results for choices 1n = 0 (a homogeneous plasma) and 1n = 0.01, 0.02, . . . , 0.05
(inhomogeneous plasmas which are in excess of the threshold equation (2.4) as
calculated for our parameter choices). The resulting density profiles for our specific
choices of 1n are illustrated later in figures 5, 9 and 10.

At this stage it is important to note two features of this profile. Firstly, we
immobilise the ions and thus keep this profile fixed throughout the simulation. Thus,
the ion-to-electron mass ratio is infinite and results are independent of the ion
temperature. This is necessary in that it avoids the problem of the fluctuations
subsiding due to kinetic damping in the absence of an external pump driving
ion-acoustic turbulence, which in test runs was found to occur much more rapidly
than the relaxation time of the instability (and so, otherwise mobile ions would
prohibit the experiment). Secondly, it follows that the profile’s spatial scale is in
fact fixed (the amplitude of each ‘potential well’ is a variable, however the length
is fixed). This allows for direct comparisons regarding the specific influence of
the amplitude as opposed to that of changing spatial scales which, according to
inhomogeneous QLT, are also a factor in influencing the relaxation (see, e.g. Ryutov
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1969). The peak-to-peak spatial scales of the resulting density cavities (arising
from our choice of constituent harmonics in (2.1)) are around 1000λD, two orders
of magnitude longer than the expected wavelengths excited by the beam–plasma
interaction, which in this case is approximately 14λD. Thus, this satisfies two
(intuitive) scale requirements of the inhomogeneity; namely that scale should be
larger than the Langmuir wavelengths so that the waves fit within the cavities, but be
sufficiently short compared to the wave propagation scale (the product of their group
speed and growth rate) such that the waves will experience refractive effects before
the saturation of the instability (viz. the gradient is not too gentle). Such requirements
are formally discussed by Ryutov (1969).

The chosen beam and (homogeneous) background parameters, except for the
beam-to-background density ratio, are the same those used in the aforementioned
Hamiltonian model of Krafft et al. (2013). This choice is motivated by both
suitability for solar wind plasmas and also to maximise comparability between
the results. However, because the quasilinear instability time τql is known to scale
as τqlωpe = (nb/n0)

−1(vb/1vb)
2 (see Melrose & McPhedran 1991), running a fully

kinetic PIC code for a diffuse astrophysical beam (where nb/n0 ∼ 10−6, i.e. running
for hundreds-of-thousands of plasma periods) with sufficient resolution and particle
representation and time step (fractions of a plasma period) is unfeasible. As such, we
have taken nb/n0 as an order of magnitude larger in order to be able to complete the
simulations with the available computational resources. As discussed by Thurgood
& Tsiklauri (2015), due to the beam–plasma system’s sensitive parameter space, this
may compromise complete comparability.

The simulations are ran for 104 plasma periods (ω−1
pe ) in a periodic domain of size

Lx = 5000λD with 5000 cells, thus grid is resolved to the Debye length 1x = λD
and comfortably spans many individual cavities of the density profile. With a beam
velocity of vb = 14Vth,e, streaming beam electrons will cross the grid approximately
28 times during the simulation, crossing through many individual density cavities
and being recycled through the boundaries. The expected group velocity of waves
excited by the two stream instability is much slower – of order ∼0.2Vth,e, and so
(unmodified) propagating wave packets will travel distances of approximately 2000λD,
in excess of the cavity lengths, and so should experience the effects of the density
gradient. The number of computational particles per cell per species (PPCPS) used is
5000 for background electrons and ions and 1315 PPCPS for the beam electrons. The
cell-to-cell particle loading noise associated with the choice of 5000 PPCPS for the
background has a root-mean-square fluctuation of approximately 0.3 %, an order of
magnitude less than inhomogeneous density threshold (2.4). Thus, the inhomogeneous
density profiles considered in this paper are clearly resolved against the noise. This
particle resolution was the maximum given available resources, and as such we were
unable to confidently separate intermediate profiles where 0 < 1n < 3(Vth,ev

−1
b )

2

from the noise levels – thus we do not consider the intermediate case of ‘weak
inhomogeneity’ in this paper. Each run took approximately 72 h of run time on 128
cores (8×2×8 core Intel Xeon E5-2650 v2 processors).

3. Results
3.1. Homogeneous regime

We begin by describing the results of the homogeneous (1n = 0) simulation before
comparing with results for the inhomogeneous regime (where 1n satisfies (2.4)) in
§ 3.2.
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Figure 1 shows the evolution of the electron velocity distribution function of the
six runs of increasing inhomogeneity 1n = 0, 0.01, 0.02, . . . , 0.05 at four instances
in time (tωpe= 1000, 2000, 5000, 10 000). Focusing on the 1n= 0 case for now (blue
curve) we see the saturation of the initial bump-in-tail instability and the merging
of the beam electrons to the bulk distribution, resulting in the characteristic plateau
formation. This is observed to occur by around tωpe = 9000, which is in excess of
the time scale predicted by the aforementioned quasi-linear theory formula (τqlωpe =
(nb/n0)

−1(vb/1vb)
2). We however, confirmed that this is a realistic relaxation time for

this set-up in our convergence testing, rather than being artificially hastened as a side
effect of poor computational particle counts as reported by Ratcliffe et al. (2014) and
Lotov et al. (2015). The discrepancy is instead due to the use of the relatively dense
and energetic beams which are outside of the formal applicability of the quasi-linear
theory, as discussed in § 2. Furthermore, we note that there is no formation of a high-
energy tail which is consistent with expectations of homogeneous quasi-linear theory.
Ratcliffe et al. (2014) and Lotov et al. (2015) have both also noted that insufficient
PPCPS leads to the erroneous formation of an unphysical high-energy tail. As such,
this serves as confirmation that our PPCPS count is sufficient to correctly resolve the
beam–plasma instability with no such numerical artefact. Given that there is no such
artefact for 1n = 0, in § 3.2, when we consider inhomogeneous results, any sign of
high-energy tail formation is therefore physically realistic.

The evolution of total field and particle energy is shown in figure 2 for the various
simulations. For 1n = 0 we see the instability onset at around tωpe = 250 which
corresponds to a growth of electric field energy in (a) and a concomitant loss of
particle energy in (b). The growth continues until the saturation time near tωpe= 9000,
which corresponds to the observed plateau formation time in figure 1. In (c), we see
that the total simulation energy is well conserved to within <0.002 % (for all of the
simulations, i.e. numerical heating is negligible). Figure 3 more specifically shows
the kinetic energy evolution of the population of beam particles, contained within
different velocity ranges. Specifically, the four bands are (i) Kp(v < vb + 1vb), (ii)
Kp(v > vb +1vb), (iii) Kp(vb +1vb < v < vb + 31vb) and (iv) Kp(v > vb + 31vb). In
the 1n= 0 case (blue curve) we see that the beam has a net loss of kinetic energy
across the different ranges, primarily from the main thermal bulk in range (i). There
is no gain of kinetic energy in any range which is consistent with the absence of any
high-energy tail formation for 1n= 0 in figure 1.

We now turn our attention to the behaviour of the electrostatic waves generated
by the beam relaxation. Figure 4 shows the evolution of electric field energy of
the homogeneous simulation in (k, ω)-space by considering 2-D, Fourier transforms
in (x, t)-space windowed over subsequent time periods. The time window size of
100ω−1

pe was determined by experimentation and provides the best balance between
frequency resolution and effective time cadence, allowing us to track the evolution
in both Fourier space and time, whilst preserving sufficient frequency resolution
to reasonably compare spectra to expected dispersion curves. The decibel scale is
defined with a reference (spectral) energy density level of 1, i.e. the plotted quantity
is 10 log(0.5ε0F(Ex(x, t))2). The dispersion curves for the expected beam mode
ω = vbk and the (unmodified by the beam) Langmuir mode ω2 = ω2

pe + 3k2V2
th,e are

overlaid. We find that the majority of initial growth occurs on the intersection of
the beam mode and Langmuir mode, i.e. the expected wave–particle resonance. As
time advances, this spectral energy density shifts to the right of the intersection of
the overlaid curves (i.e. the resonance shifts along the Langmuir dispersion curve
towards higher k). This is due to a dynamic shift in the resonance point as the
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(a)

(b)

(c)

FIGURE 2. Evolution of (a) total field energy (J), (b) total particle energy (J), and (c)
total simulation energy (% change) over time for the six runs of increasing inhomogeneity
amplitude – 1n= 0 (blue), 0.01 (green), 0.02 (red), 0.03 (cyan), 0.04 (magenta) and 0.05
(black).

instability proceeds – as beam particles loose energy and join the main population,
the effective beam velocity is reduced and so the resonance point shifts along the
Langmuir wave dispersion curve to higher k. There is also some development of
spectral energy density in the negative k for the homogeneous case (see especially
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(a)

(b)

(c)

(d)

FIGURE 3. Evolution of the kinetic energy budget of the beam particles in four different
velocity ranges for different values of 1n, showing net acceleration and deceleration
processes. The four velocity bands correspond to Kp(v < vb +1vb) (a), Kp(v > vb +1vb)
(b), Kp(vb+1vb <v<vb+ 31vb) (c) and Kp(v > vb+ 31vb) (d). Kp is normalised by the
initial kinetic energy of the beam. The level of inhomogeneity is indicated by line colour
– 1n= 0 (blue), 0.01 (green), 0.02 (red), 0.03 (cyan), 0.04 (magenta) and 0.05 (black).
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FIGURE 4. Embedded movie showing the evolution of time-windowed fast Fourier
transforms of electric field energy in (k, ω)-space for the homogeneous simulation.

FIGURE 5. Embedded movie showing the wave packet evolution for 1n = 0. The blue
curve shows the spatial profile of the electric field Ex (V m−2), the red shows 10E2

X − 0.5
and the black shows the density profile δn/n0.

the blue curve in figure 8). This is a minor effect, barely noticeable in figure 4. We
also note the presence of a spectral peak at the harmonic of the beam-driven waves,
i.e. at (2kL, ωL). This could be a signature of kinetic localisation as described by
Muschietti et al. (1995, 1996).

Finally, with regards to the spectra, we also note the presence of a small spectral
peak at k = 0 visible at early times. This is most clearly visible in figure 8, where
the spectra of figure 4 and similar have been integrated over ω for direct comparison
between different choices of 1n (see § 3.2 for full details). Occurring for all values
of 1n, this corresponds to a beam-aligned, standing mode of the electric field Ex

oscillating at the local Langmuir frequency, which is present from the simulation
initialisation (thus, before the instability onset). It is caused by the non-zero initial
current imposed by the beam at t= 0, and has been discussed in detail by Baumgärtel
(2013). Whilst it is possible to remove this mode by introducing a compensating drift
velocity to the background electrons, we tolerate its presence as it is unclear whether
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such a compensation is physically appropriate (in particular, it may influence the
correct return-current processes). Regardless, we have found that the amplitude
associated with this mode, is in all runs much less than that of the Langmuir waves
generated after the instability onset and as such it does not significantly affect the
dynamics of the participating Langmuir wave population.

The time evolution of the generated electrostatic waves is presented in figure 5.
In particular, it shows the evolution of the electric field in (x, t)-space in the
homogeneous case (blue curve), and a scaled measure of electric field energy
density (10E2

X − 0.5, red-curve). After the instability onset, a near-monochromatic
wave, with a clear rightward-propagating character starts to grow. In the time interval
tωpe = 2000–4000, we note two effects in the homogeneous simulation – firstly, a
coherent amplitude modulation due to the beating with the aforementioned standing
oscillation of the electric field (see also Baumgärtel 2013), and secondly, signs of
amplitude localisation in Ex, or ‘clumping’. The localisation in this case, given the
absence of both density inhomogeneity and ion-acoustic participation (due to fixed
ions), is due to the nonlinear kinetic localisation as described by Muschietti et al.
(1995, 1996), a process which is consistent also with the observation of the harmonic
signal previously noted in the Fourier spectra.

3.2. Inhomogeneous regime and comparisons
We now turn our attention to the five simulations where the average density fluctuation
is in excess of the quasi-homogeneous threshold equation (2.4), and consider how
they differ from the homogeneous case considered in § 3.1. Returning to figure 1,
we note that all of the inhomogeneous simulations differ from the homogeneous
case in that (i) the deceleration of the bulk of the beams particles and associate
plateau formation is enhanced and (ii) beam’s particles are also accelerated to higher
velocities leading to the formation of a high-energy tail. Thus, we immediately see
that there are two competing effects of the changes to wave–particle resonances due
to the inhomogeneity, namely; (i) an enhanced deceleration process due to a broader
range of available particle-to-wave resonances, and (ii) an acceleration process due to
the re-absorption of wave-field energy into accelerated beam particles. The particular
rates of these two process and the competition between them are found to vary in
the inhomogeneous regime depending on the particular choice of 1n. The difference
is more clear in the evolution of energy budgets (such as overall wave and particle
energies in figure 2, and the beam kinetic energy budgets in different velocity ranges
in figure 3) and in the evolution of the wave-field spectrum (figures 6, 7, 9 and 10).

First considering the overall particle and wave energy as per figure 2, we see that
in all inhomogeneous cases considered the net effect of the resonance broadening
has been to significantly curtail the maximum level of gained by the waves (a), and
thus lost by the particles (b). In comparison to the homogeneous case, the peak
total wave-field energy is in the range (5–10) × 10−10 J. This is approximately 2–4
times less than the homogeneous case, which peaks at approximately 1.9 × 10−9 J.
The peak wave energies (or minimum particle energies) are, in all cases, reached at
earlier times than in the homogeneous case and so the overall instability time scale
has been reduced (which is consistent with the more rapid plateau formation visible
in figure 1). The initial growth rates leading to the maxima/minima of wave/particle
energy are found to vary depending on the choice of 1n. For 1n = 0.01, 0.02 and
0.03 growth rates are actually initially slightly faster than the homogeneous rate,
for 1n = 0.04 the growth rate is approximately the same as the homogeneous rate,
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FIGURE 6. Embedded movie showing the evolution of time-windowed fast Fourier
transforms of electric field energy in (k, ω)-space for the 1n= 0.01 simulation.

FIGURE 7. Embedded movie showing the evolution of time-windowed fast Fourier
transforms of electric field energy in (k, ω)-space for the 1n= 0.05 simulation.

and only for 1n = 0.05 we see a comparatively slower growth rate. This pattern
is also seen in the overall value of the maxima/minimum wave/particle energies
– within the class of inhomogeneous runs, 1n = 0.01, 0.02 and 0.03 achieve the
highest amount of wave-particle energy exchange, whereas 1n= 0.04 and 1n= 0.05
achieve less. Following the peak/minimum wave/particle energy, the dominant energy
exchange process is reversed and so the wave fields have a net loss of energy to the
particles, which appears to asymptotically tend to the same value for all choices of
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FIGURE 8. Comparison of k-space evolution of electric field energy for different levels
of inhomogeneity with time, where 1n= 0 (blue), 0.01 (green), 0.02 (red), 0.03 (cyan),
0.04 (magenta) and 0.05 (black).

1n> 0. This is consistent with the end-state velocity distribution function in figure 1,
whereby all inhomogeneous runs have approximately the same phase-space profile at
tωpe = 10 000.

Returning to figure 3, we now compare the results in terms of the evolution
of the kinetic energy distribution of the beam particles. The overall trend for the
inhomogeneous runs is consistent with our description of figures 1 and 2 – compared
to the 1n = 0 run we see a enhanced deceleration of the thermal beam electrons
(a, where Kp(v < vb + 1vb)). Not only is this a more rapid deceleration, but it is
continuous for sufficiently long to reach a greater level of depletion, with less kinetic



www.manaraa.com

14 J. O. Thurgood and D. Tsiklauri

FIGURE 9. Embedded movie showing the wave packet evolution for 1n= 0.01. The blue
curve shows the spatial profile of the electric field Ex (V m−1), the red shows 10E2

X − 0.5
and the black shows the density profile δn/n0.

FIGURE 10. Embedded movie showing the wave packet evolution for 1n=0.05. The blue
curve shows the spatial profile of the electric field Ex (V m−1), the red shows 10E2

X − 0.5
and the black shows the density profile δn/n0.

energy being contained within the plateau at end times. However, this is superficially
inconsistent with what we have seen with figure 2, whereby the 1n> 0 cases retain
more overall particle energy and transfer less overall energy to the Langmuir waves.
The resolution is, of course, in that the enhanced energy loss due to deceleration
is adequately compensated by the acceleration associated with the high-energy tail
formation, where we see a growth of kinetic energy associated with particles in
excess of the beam’s thermal range ((b), where Kp(v > vb+1vb)). By late times, the
combined net effect of the deceleration and acceleration processes is such that the
beam kinetic energy for 1n> 0 is in the range 0.87–0.88Kp(t = 0), far in excess of
the 1n= 0 case where it is approximately 0.64Kp(t= 0). Thus, in the inhomogeneous
case, we see that the beams loose less overall energy to the background wave field.
All choices of 1n > 0 have a similar end state in the thermal range (a), which is
consistent with the observation of figure 1 that all inhomogeneous runs considered
appear to tend towards the same plateau shape, height and extent. For higher choices
of inhomogeneity 1n = 0.04 and 0.05, we see in (b) that the acceleration process
has an earlier onset, specifically from the range (iii). Interestingly, it appears that
by the end state, the acceleration to the largest velocities (c, Kp(v > vb + 31vb)) is
less efficient for the 1n = 0.01 and 0.05 runs than the 1n = 0.02, 0.03, 0.04 runs,
suggesting that this process may not exhibit a simple dependence on the amplitude
of the fluctuations.
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We now refer to figures 6 and 7 which consider the evolution of the specific cases
1n= 0.01 and 1n= 0.05 respectively in (k, ω)-space, and also figure 8, which shows
the time evolution across k-space (having integrated over ω) for all values of 1n; on
the same plot for ease of comparison. All values of 1n begin with an initial growth of
spectral energy density concentrated in a peak about k= 0.072, the expected value of
prescribed by the resonance condition for the electron beam and the Langmuir wave
dispersion relation for the case of a constant background density. Subsequently, from
around tωpe = 600 onwards, we find that unlike in the 1n= 0 case (where this peak
grows to around −170 dB), for 1n > 0 that the spectral energy density is smeared
across a broader range, extending towards smaller values of k due to the resonance
broadening with a lower peak spectral energy density of around −180 dB.

As time further progresses, this broadening of the spectrum extends into negative-k
space. In the homogeneous case the dispersion relation diagram shows that when
resonant condition,

√
ω2

pe + 3V2
th,ek2 = vbk, of Langmuir waves and electron beam is

met initially Langmuir wave packet is generated. Subsequently, due to quasi-linear
relaxation vb essentially decreases as it joins the bulk distribution therefore for
the right-hand side of the latter equality to stay the same, k needs increase. This
behaviour can be clearly seen in figures 4 and 8. In the homogeneous case no
electron acceleration is seen, as expected. In the case with 1n = 0.01 we see
appearance of negative wavenumbers k along the expected dispersion curve (figure 6).
This implies that backwards propagating Langmuir waves appear. Because parametric
instabilities such as electrostatic decay (see e.g. Zakharov, Musher & Rubenchik 1985)
are inhibited due to immobile ions, only one possibility is allowed – the appearance
of negative wavenumbers k (figures 6 and 8) can be attributed to the Langmuir wave
refraction on the positive density gradient parts of the inhomogeneity. As shown by
Pechhacker & Tsiklauri (2014) for the case of Langmuir waves propagating on a
single large-scale density gradient, on positive density gradient regions k deceases,
which implies that Langmuir waves are resonant with higher-velocity electrons,
Vph = ωLangmuir/k, hence we see particle acceleration in the inhomogeneous case, but
no acceleration in the uniform density case. Because the dispersion relation parabola
is shallow, even a small increase in number density can lead to a large decrease
in k. The drift towards smaller k, including negative k, does not require three-wave
interaction or ion-sound-mediated electrostatic decay and naturally occurs due to
wave refraction alone. The negative density gradient and quasi-linear relaxation both
lead to increase in k, but do not result in the particle acceleration. For large density
fluctuations with 1n= 0.05, the dispersion relation diagram (see figure 7) shows all
of the features of the 1n= 0.01 case, however Langmuir wave packets slide off the
Langmuir dispersion parabola because of nonlinear modifications in a similar manner
as described by Thurgood & Tsiklauri (2015). Note that for the time window used
the resulting frequency resolution of the discrete Fourier transform is 1ω= 0.0672ωpe,
which is of the order of the separation of the power concentration from the linear
dispersion relationship, with them at most being separated by a few points. As such,
the significance of this separation is unclear in these figures. We find that if larger
time windows are chosen (of say thousands of ω−1

pe ), the separation becomes clearly
resolved, confirming that the feature is not just an artefact. However, such figures have
too low a time resolution to show the procession to smaller-k (the key feature) and as
such are not shown here. Comparing amongst different inhomogeneous simulations,
it is clear that the progression to negative-k (i.e. the amount of Langmuir wave
reflection) scales with 1n, whereby the largest-amplitude inhomogeneous profile
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FIGURE 11. Time–distance diagram of electric field energy for 1n = 0.05, illustrating
the temporal evolution of the spatially localised wave packets. Note the reflections of the
packets between the walls of the density cavities, where the black dashed lines illustrate
the density profile along x. Levels of the colour table are logarithmically spaced, for best
contrast between features (see figure 10 for corresponding quantitative information).

1n = 0.05 (viz. the profile with the steepest gradients) produces a population of
backwards-propagating waves most rapidly, out-pacing less steep profiles, contrasting
with the most gentle profile 1n = 0.01 which reflects waves over a significantly
longer time scale. This kinematic effect relating to the behaviour of Langmuir waves
propagating in a longitudinally inhomogeneous medium can be observed directly in
our simulations; specifically, the reflections in the density cavities are observed in the
evolution of the electric field waveforms in (x, t)-space (figures 9–11), the co-spatial
mode drift to low-k modes is observed in wavelet power spectra of the electric
field (figure 12) and the concomitant acceleration of particles is seen in phase space
(figure 13) – all of which will be further discussed shortly.

We also find in figures 6–8 that the 1n > 0 spectra undergoes more rapid
broadening towards higher positive-k than in the 1n= 0 case, and that this proceeds
more rapidly for higher values of 1n. In § 3.1, we attributed the shift to higher k to
a dynamic shift in the beam–particle resonance condition as the beam loses particles
to the plateau formation. The observed rise in broadening rate as 1n increases is
thus a consequence of the enhanced deceleration of the bulk of the beam particles
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FIGURE 12. Embedded movie of wavelet power spectrum of the electric field in
(x, k)-space for 1n= 0.05. The localisation of wave packets on density gradients is further
illustrated, as is the kinematic effect of the reduction in k during the reflection on positive
gradients (cf. figure 11). The white curve illustrates the density profile in x, and the
straight white line is the homogeneous beam–particle resonance kλD = 0.072. Note the
‘bursty’ behaviour of the low-k modes.

(i.e. more rapid plateau formation) for 1n > 0 as we have previously commented
on in our discussion of figures 1–3. Although the rate of the progression towards
higher positive-k is dependent on 1n, we find that at approaching the end time the
extent of the spectrum towards positive-k is approximately the same for all runs,
which is consistent with the similar end states of the 1n> 0 beam’s in phase space
(see figure 1).

Next, we consider the Langmuir wave behaviour in (x, t)-space, shown in figures 9
and 10, which for the specific case of 1n= 0.01 and 1n= 0.05 show the evolution of
the electric field in (x, t)-space in the case (blue curve), a scaled measure of electric
field energy density (10E2

X − 0.5, red curve), and the particular density profile (black
curve) (i.e. they are equivalent to figure 5 for the homogeneous case). In all cases
we observe an obvious localisation effect in which the wave fields and their energy
densities become concentrated in the local density cavities, whereby the highest peaks
often coincide with locations of maximum local gradient (corresponding to Langmuir
wave turning points). This high degree of localisation leads to a clumping of energy
density many orders of magnitude above background levels. We also note that this
magnitude is not necessarily greater for greater 1n, although the larger choices of
1n result in more local density cavities with high gradients, and so we see a greater
number of localised peaks, or clumps, for higher 1n. This behaviour is completely
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FIGURE 13. Phase-space distribution background and beam electrons. The white curve
illustrates the density profile, and the red curve the localisation of electric field energy.
The turning points in the density profile/concentrations of electric field energy separate
distinct regions of phase space, with the production of high-velocity particle downstream
of the turning points. Due to the periodic nature of the boundary, and the crossing times of
the particles, these jets are quickly recycled through the boundary to the upstream regions
and make multiple passes through the acceleration sites.

different to the 1n= 0 case shown in figure 5 (discussed in § 3.1). In the movies, one
can see that the energy density localisations are propagating, although they typically
remain trapped in the cavity (but they do not sit at a singular point, such as the
local density minima or the local gradient maxima). In some cases, as these clumps
propagate to the up the walls of a cavity, clear reflections at the local gradient maxima
(which act as a turning point) can be observed (in particular, see the case of 1n=0.05
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whereby many of the individual density cavities possess a steep gradient). Thus, we
can directly observe the formation of a population of counter-propagating Langmuir
waves due to Langmuir wave reflection off inhomogeneities which has been previously
discussed in the context of the spectral results. Additionally, one can directly observe
the loss of wave energy density to the high-energy particle acceleration process. As
an example, consider the 1n = 0.01 movie near the point x = 1200λD from times
tωpe = 2000–4000. As the concentration propagates up along the cavity, it becomes
trapped at the maxima and loses energy density rapidly. These reflections can also
be clearly demonstrated without appealing to animation by considering time–distance
diagrams of the electric field energy, as shown in figure 11 for the case 1n = 0.05.
In figure 11, the reflections of waves within density cavities, associated intensification
on turning points, and crossings of counter-propagating wave fronts can all be readily
observed. Note, the levels chosen to produce the colour table are logarithmically
spaced to enhance contrast between features (i.e. the figure provides information
about the timings and location of reflections, and it is necessary to refer to figure 10
for quantitative information regarding the field amplitudes.)

The aforementioned decrease in k seen in the Fourier spectra, which we earlier state
can only be due to this refraction process, can be further confirmed by considering
the evolution of wavelet power spectra of the electric fields, which allows the
concentration of wave power in (k, x)-space to be examined, i.e. unlike Fourier
transforms, we can examine the distribution k in x. Figure 12 shows the concentration
of wavelet power at instances in time for the 1n= 0.05 case (specifically, the figure
shows the root of wavelet power, for best contrast). The white curve illustrates the
density profile in x, and the straight white line is the homogeneous beam–particle
resonance kλD = 0.072. The black, labelled contour indicates the 95 % confidence
level in the signal (see Torrence & Compo (1998) for details on wavelets and their
statistical properties). Crucially, the figure demonstrates that the conversion to low-k
modes occurs in the locality of the turning points – confirming our earlier description
of the process (compare figure 11 with the reflections in figure 11). This qualitative
behaviour is common to all inhomogeneous cases considered, and is absent in the
1n= 0 case. The figure also demonstrates that some wave packets are (temporarily)
converted to higher-k modes during their propagation down negative density gradients.
The movie clearly shows that the low-k power emanates from the turning points on
the density gradients, and also that the production of low-k power occurs in a bursty
fashion, which suggests that corresponding particle acceleration may also occur in
bursts.

Finally, the particle acceleration concomitant to the refraction can be seen in the
electron phase space, shown for the case of 1n= 0.05 in figure 13. Clear qualitative
differences in the beam phase space can be seen upstream and downstream of
the turning points in the density gradients can be seen, with the production of
high-velocity particle jets in the downstream regions. As the propagation speed of
free-streaming particles is rapid compared to Lx, the jets and other features cross
through multiple density cavities and are rapidly recycled through the periodic
boundary from the downstream region to the right to the upstream region to the left,
making pinpointing particular features in phase space difficult for our specific set-up
(although we stress that the periodic recycling is appropriate for our problem, which
is intended to model the global properties of a beam passing through many density
cavities). Further, due to disk-space restrictions and to reduce read/write operations,
we only recorded the full velocity distribution (not integrated over x) every 100ω−1

pe ,
and as such cannot directly confirm whether the bursty behaviour of the production
of low-k waves does indeed lead to a bursty particle acceleration.
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These direct observations of the main physical aspects of the particle acceleration
process, underpinning the changes of the beam–plasma instability in the inhomogene-
ous regime, are elaborated upon further in § 4.

4. Discussion

We have demonstrated in our PIC simulations that the introduction of an
inhomogeneous density profile significantly affects the evolution of the electron
beam–plasma instability. The variable density profile with amplitudes in excess of
the threshold equation (2.4) apparently facilitates two processes that will compete to
determine the overall beam energy loss and relaxation time, namely; (i) an enhanced
deceleration process and thus quicker plateau formation, and (ii) an acceleration
process which permits the formation of a high-energy tail.

The enhanced deceleration process occurs due to a broader range of available
particle-to-wave resonances. The acceleration process is associated with the re-
absorption of wave-field energy into accelerated beam particles. This process is
directly facilitated due to the refraction of Langmuir waves as they propagate along
a region with a positive density gradient. There is clear evidence in § 3.2 that
as Langmuir waves propagate through regions of positive density gradient they
experience a decrease in their wavenumber k (see, e.g. the wavelet power spectrum,
figure 12). Thus, their phase velocity vph =ω/k increases and so the waves exchange
energy resonantly with increasingly energetic particles during their propagation up the
density gradients, producing high-velocity particle jets which can be seen in phase
space (figure 13). The same process has been detailed for a beam propagating on a
single large-scale positive density gradient by Pechhacker & Tsiklauri (2014).

The net effect of the two above processes was found in all inhomogeneous cases
considered to be as follows; in comparison to the homogeneous case the bump
in tail instability time scale is actually quicker, with a faster procession towards
plateau formation, although the beam population loses much less energy overall due
to the high-energy tail formation. We find no evidence of the slight positive slopes
remaining in the distribution (integrated over the domain) after saturation as discussed
by Voshchepynets & Krasnoselskikh (2013), rather all cases considered here appear
to relax to a plateau. We also examined the local distribution functions at the end
time (i.e. at specific cells in the domain) to look for evidence of localised positive
slopes, however it becomes clear that the number of PPCPS leads to a somewhat
noisy distribution on the slope which could well obscure slightly positive slopes.
We believe it is likely that the formation of the gentle positive slopes is a subtle
kinetic effect which is shown in the semi-analytical models of Voshchepynets &
Krasnoselskikh (2013), but would require very high numbers of pseudoparticles to
demonstrate with a PIC simulation.

We also find that all cases considered in excess of the inhomogeneity amplitude
threshold tend to relax to a similar asymptotic end state, both in terms of the
distribution function (figure 1) and energy distribution of particles (figure 3). This
result is consistent with the work of Voshchepynets et al. (2015), who considered
inhomogeneous beam–plasma interaction with a probabilistic model (see e.g. their
figure 4). Our results are consistent as both studies do not venture outside a
quasi-linear/weak beam regime, both are 1-D and both ignore the influence of
ion-sound waves (in our case, due to ion immobilisation). At this stage, we cannot
make any comments on an underlying explanation for this remarkable result, beyond
noting that we have obtained the same with a PIC approach, and highlighting that
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the particular end state was shown to be dependent on the initial beam energy and
beam density in the Voshchepynets et al. (2015) study. The end state, consisting of
an asymptotic equilibrium reached between the Langmuir waves and the suprathermal
electrons, has been explored in the case of kappa-distributed plasmas by Yoon (2011,
2012a,b). It is possible that future PIC simulations similar to those considered in
this paper could provide insight into the nature of the asymptotic equilibrium, by
varying parameters other than the density profile to alter the end state, and also
give an indication as to whether Gaussian or Kappa distributions are more plausible
equilibrium distribution functions.

In addition to the overall effect of the density cavities on the beam’s energy
loss and instability saturation time it is also interesting that some individual density
cavities assume steep enough gradients such that Langmuir packets are directly
observed to reflect about turning points (e.g. figure 11). This shows that simple
Langmuir wave kinematics in the inhomogeneous regime facilitates the development
of a population of counter-propagating Langmuir waves. The presence of a population
of counter-propagating Langmuir waves is an essential component in typical models
of harmonic solar radio emission whereby their three-wave coalescence produces the
emission. Usually, the population of counter-propagating Langmuir waves is thought
to be created through electrostatic decay of the forward-propagating waves into
ion-acoustic waves and backwards-propagating waves (such as in the self-consistent
emission simulations of, e.g. Thurgood & Tsiklauri 2015). However, in this case
we find that a population of counter-propagating Langmuir waves can easily be
created in the absence of such three-wave interactions, a population which could then
proceed to coalesce and participate in harmonic radio emission. It should be noted
that beating Langmuir waves in the absence of ion-acoustic counterparts have actually
been occasionally observed in situ (e.g. Kellogg et al. 1999). It would be interesting
to compare radio emission resulting from the homogeneous and inhomogeneous
cases in future work, although it is likely using a full PIC approach will suffer
severe computational demands (for example, the relatively expensive 1D simulations
considered here would need to be extended into two dimensions to study radio
emission).

As stressed in § 2, these experiments have specifically considered the influence
of ‘strong’ inhomogeneity, i.e. that in excess of the fluctuation-amplitude threshold
equation (2.4). We have not considered the intermediate case of inhomogeneity levels
less than, or approaching, this value due to computational restrictions. Given that
our PIC results broadly confirm the results of Krafft et al. (2013) in the strongly
inhomogeneous case, we find no reason to suggest that the physics and end state of
the intermediate cases should be different to those found using their model, in which
cases of weak inhomogeneity not satisfying the threshold simply proceed as per the
perfectly homogeneous case.

5. Conclusions
We have for the first time shown with a fully kinetic PIC approach that plasma

inhomogeneity can seriously alter behaviour of the electron beam–plasma instability,
independently confirming previous theoretical predictions and modelling efforts with
a clear, robust and simple numerical approach.

We find that in the case of no fluctuations (homogeneous density), the dispersion
relation diagram shows that when the resonant condition,

√
ω2

pe + 3V2
th,ek2 = vbk, of

Langmuir waves and electron beam is met, initially Langmuir wave packets are
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generated. Then, because of quasi-linear relaxation (when beam particles join the
main population forming the plateau) vb essentially decreases as it joins the bulk
distribution therefore for the right-hand side of the latter equality to stay the same,
(i.e. for wave packet to stay on the dispersion curve) k needs to increase. This
behaviour can be clearly seen in figures 4 and 8. In the homogeneous case no
electron acceleration is seen, as expected. In the case of 1n = 0.01, the dispersion
relation (figure 6) shows appearance of negative wavenumbers. This implies that
backwards propagating Langmuir waves appear. Because parametric instabilities are
inhibited due to immobile ions, there is only one possibility: the appearance of
negative wavenumbers (figures 6 and 8) can be attributed to the Langmuir wave
refraction on the positive density gradient parts of the inhomogeneity. We have
directly observed this refraction in the electric field waveforms and corresponding
wavelet power spectra. As discussed by Pechhacker & Tsiklauri (2014), at positive
density gradient locations k deceases, which means that Langmuir waves are resonant
with higher-velocity electrons, Vph =ωLangmuir/k, hence we see particle acceleration in
the inhomogeneous case, but no acceleration in the uniform density case. Because
the dispersion relation parabola is shallow, even small increase in number density
can lead to large decrease in k (even making it negative). The key point is that
drift towards smaller k, including negative does not require three-wave interaction
or ion-sound-mediated decay and naturally occurs due to wave refraction alone. (1)
Negative density gradients and (2) quasi-linear relaxation both lead to increase in
k, but do not result in the particle acceleration. For the higher-level fluctuations
considered, e.g. 1n = 0.05, the dispersion relation diagram (see figure 7) shows all
the features of the 1n = 0.01 case, however Langmuir wave packets now slide off
the Langmuir dispersion parabola because of nonlinearity, in a similar manner as
described by Thurgood & Tsiklauri (2015).

In conclusion, fully kinetic PIC simulations broadly confirm findings of quasi-linear
and the Hamiltonian model based on Zakharov’s equations with a kinetic treatment
of the beam only. We also find that the strong density fluctuations (e.g. 5 % of the
background) modify properties of excited Langmuir waves altering their dispersion
properties.
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